Best Constants for Gagliardo-nirenberg Inequalities and Applications to Nonlinear Diiusions ?
نویسنده
چکیده
In this paper, we nd optimal constants of a special class of Gagliardo-Nirenberg type inequalities which turns out to interpolate between the classical Sobolev inequality and the Gross logarithmic Sobolev inequality. These inequalities provide an optimal decay rate (measured by entropy methods) of the intermediate asymptotics of solutions to nonlinear diiusion equations.
منابع مشابه
Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions
In this paper, we find optimal constants of a special class of Gagliardo-Nirenberg type inequalities which turns out to interpolate between the classical Sobolev inequality and the Gross logarithmic Sobolev inequality. These inequalities provide an optimal decay rate (measured by entropy methods) of the intermediate asymptotics of solutions to nonlinear diffusion equations.
متن کاملGeneral optimal euclidean Sobolev and Gagliardo-Nirenberg inequalities.
We prove general optimal euclidean Sobolev and Gagliardo-Nirenberg inequalities by using mass transportation and convex analysis results. Explicit extremals and the computation of some optimal constants are also provided. In particular we extend the optimal Gagliardo-Nirenberg inequality proved by Del Pino and Dolbeault 2003 and the optimal inequalities proved by Cordero-Erausquin et al. 2004.
متن کاملExtremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities
We consider a family of Caffarelli-Kohn-Nirenberg interpolation inequalities and weighted logarithmic Hardy inequalities which have been obtained recently as a limit case of the first ones. We discuss the ranges of the parameters for which the optimal constants are achieved by extremal functions. The comparison of these optimal constants with the optimal constants of Gagliardo-Nirenberg interpo...
متن کاملDirect and Reverse Gagliardo–nirenberg Inequalities from Logarithmic Sobolev Inequalities
We investigate the connection between the validity of certain logarithmic Sobolev inequality and the validity of suitable generalizations of Gagliardo–Nirenberg inequalities. A similar connection holds between reverse logarithmic Sobolev inequalities and a new class of reverse Gagliardo–Nirenberg inequalities, valid for a suitable class of functions. 0. Introduction The main concern of this pap...
متن کاملCompactness properties for trace-class operators and applications to quantum mechanics
Interpolation inequalities of Gagliardo-Nirenberg type and compactness results for self-adjoint trace-class operators with finite kinetic energy are established. Applying these results to the minimization of various free energy functionals, we determine for instance stationary states of the Hartree problem with temperature corresponding to various statistics. Key-words. Compact self-adjoint ope...
متن کامل